

Cost Engineering Appendix

DRAFT

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

Appendix C

September 2022

Table of Contents

1	Iı	ntroduction	5
	1.1	Study Alternatives Overview	5
2	V	Vork Breakdown Structure	7
3	C	Cost Estimating Methodology	7
	3.1	Scope of Work Summary	
	3.2	SSB and Other Navigation Gates	
	3	2.2.1 VN, JB, & HR SSBs – Class 4 Cost Estimate	8
	3	2.2.2 SSB Alternative Alignments and RRF and IFF Navigation Gates – Hybrid	
	P	Parametric Class 4 Cost Estimate	10
	3.3	SBM, RRF, and IFF	10
	3.4	Interior Drainage Features	11
	3.5	Individual Structure Risk Management (Non-structural and Ring-walls)	11
	3.6	SBM, RRF, and IFF Relocation	12
	3.7	Lands and Damages	12
	3.8	Planning, Engineering, & Design	12
	3.9	Construction Management	12
4	S	chedule Methodology	13
	4.1	Environmental Restriction Windows	13
	4.2	NYNJHAT Study Alternative - Construction Duration Methodology	-
5		Contingencies	
6	C	OMRRR Costs	1/
7	N	NYNJHAT Study Alternatives First Cost Tables	19
8	A	Annual Cost Summary	23
9	C	Cost Summary	24
10	R	References	. 26

LIST OF TABLES

Table 1: NYNJHAT Study Alternatives – Structural Measure Overview
Table 2: WBS Classification by Cost Items 7
Table 3: Scalable Equivalent Selection General Criteria
Table 4: Remaining SSB (except SH) Scalable Equivalent VN, JB, & HR Sector Gate, Lift Gate,
or Dam Section
Table 5: SH Scalable Equivalent VN, JB, & HR Sector Gate, Lift Gate, or Dam Section
Table 6: SSB Environmental Restriction Windows
Table 7: SBM, RRF, and IFF Environmental Restriction Windows
Table 8: NYNJHAT Study Alternative Construction Duration
Table 9: Alternative 2 Contingency Factors 15
Table 10: Alternative 3A Contingency Factors 15
Table 11: Alternative 3B Contingency Factors 16
Table 12: Alternative 4 Contingency Factors 16
Table 13: Alternative 5 Contingency Factors 17
Table 14: NYNJHAT Features of Work 17
Table 15: Alternative 2 First Cost Table
Table 16: Alternative 3A First Cost Table
Table 17: Alternative 3B First Cost Table 21
Table 18: Alternative 4 First Cost Table
Table 19: Alternative 5 First Cost Table
Table 20: Alternative Costs Summary
Table 21: Total Project Cost Summary for the Tentatively Selected Plan 25

LIST OF ACRONYMS

Term/Acronym	Expanded
AK	Arthur Kill
AMF	Access Material Factor
CSI	Construction Specifications Institution
CWWBS	Civil Works Work Breakdown Structure
E&D	Engineering & Design
EL.	Elevation
EM	Engineering Manual
ER	Engineer Regulation

Term/Acronym	Expanded		
FC	Flushing Creek		
GC	Gowanus Canal		
GIS	Geographic Information System		
NYNJHAT	New York–New Jersey Harbor and Tributaries Coastal Storm Risk		
ΝΙΝJΠΑΙ	Management Feasibility Study		
HFFPF	High Frequency Flood Protection Feature		
HOOH	Home Office Overhead		
HR	Hackensack River		
HRL	Hackensack Perimeter Lower Area – Polygon		
IFF	Induced Flooding-Mitigation Features		
JB	Jamaica Bay		
JOOH	Job Office Overhead		
KV	Kill Van Kull		
LOP	Line of Protection		
MCASES	Micro-Computer Aided Cost Estimating System		
MCLEM	Marine Crew Labor and Equipment		
MII	MCASES Second Generation		
NAVD88	North American Vertical Datum of 1988		
NAVD88	North American Vertical Datum of 1988		
NC	Newton Creek		
NJ	New Jersey		
NY	New York		
NYC	New York City		
OMRRR	Operation Maintenance Repair Replacement Rehabilitation		
PED	Planning, Engineering, & Design		
PDT	Project Delivery Team		
RRF	Risk Reduction Features		
SBM	Shore-Based Measures		
SH	Sandy Hook		
SIOH	Supervision, Inspection, and Overhead		
SoW	Scope of Work		
SSB	Storm Surge Barriers		
TN	Throg's Neck		
TPCS	Total Project Cost Summary		
TSP	Tentatively Selected Plan		
USACE	United States Army Corps of Engineers		
USACE ER	USACE Engineering Regulation		
USACE-NAN	USACE New York District		
VN	Verrazano Narrows		
WBS	Work Breakdown Structure		

1 Introduction

This appendix presents the cost estimates and construction durations developed for the NYNJHAT study, including both the in-water (e.g., storm-surge barriers) and land-based features (e.g., levees, floodwalls, etc.), to achieve a Class 4 (Class 5 for some cases) cost estimate per Engineer Regulation (ER) 1110-2-1302 for the purpose of assisting with distinguishing the current five project alternatives described in the main feasibility report for the selection of a tentatively selected plan (TSP).

1.1 Study Alternatives Overview

The six alternatives for the NYNJHAT Study (no action, and five project alternatives) are presented in the body of the main feasibility report. An overview of each study alternative is presented in Table 1.

Areas that seeflood riskAlt.reduction as aresult of theAlternative		Feature	Location Description of Features and Measures			
1	None.		No Action Alternative.			
2	Most of the	SSBs:	Outer Harbor (OH) and Throgs Neck (TN)			
	NYNJHAT	SBMs:	Tie-ins to TN SSB and tie-ins to OH SSB			
	Study area.	IFFs:	Along shorelines at the western end of the Long Island Sound. IFFs include additional SSB structures.			
		RRFs:	Within the newly created basin between the OH and TN SSB.			
3 A	A large portion of the NYNJHAT	SSBs:	Arthur Kill (AK), Verrazzano Narrows (VN), Throgs Neck (TN), Jamaica Bay (JB), Sheepshead Bay (SB), Gerritsen Creek (GRC).			
	Study area.	SBMs:	Tie-ins to the JB SSB, tie-ins to VN SSB, tie-ins to AK SSB and tie- ins to TN SSB.			
		IFFs:	Along shorelines at the western end of the Long Island Sound, IFFs at Breezy Point and IFFs in the Lower Bay along the Staten Island and Jersey shoreline. IFFs include additional SSB structures.			
		RRFs:	Within the newly created basin between the AK, VN and TN SSB and within Jamaica Bay, upstream of the JB SSB.			
B Inland NJ areas SSBs: AK, Kill van Kull (KVK), JB, Flus			AK, Kill van Kull (KVK), JB, Flushing Creek (FC), SB, GRC, Newtown Creek (NC), Gowanus Canal (GC).			
	terminals and Newark airport) and west side of Staten Island as result of SSBs. In addition,	SBMs:	Tie-ins to the JB SSB, tie-ins to the AK SSB, tie-ins to KvK and tie- ins to the FC SSB. In addition, SBMs in the Red Hook neighborhood tied into the GC SSB and SBMs in Long Island City tied into the NC SSB. SBMs along the shorelines of Jersey City, the south side and west side of Manhattan and SBMs along the Harlem River.			
		IFFs:	At Breezy Point and IFFs in the East River and Harlem River.			
	areas with relative high flood risk in NYC.	RRFs:	Within the newly created basin between the AK and KVK SSB and within Jamaica Bay, upstream of the JB SSB.			
4	Only the areas	SSBs:	Hackensack River (HR), NC, GC, JB, FC, SB, GRC			
	with higher flood risk or smaller tributary basins in NYNJHAT study area.	SBMs:	Tie-ins to the JB SSB, tie-ins to the HR SSB and tie-ins to the FC SSB. In addition, SBMs in the Red Hook neighborhood tied into the GC SSB and SBMs in Long Island City tied into the NC SSB. SBMs along the shorelines of Jersey City, the south side and west side of Manhattan and SBMs along the Harlem River			
		IFFs:	At Breezy Point and IFFs in Newark Bay and the lower reaches of the Passaic and Hackensack River.			
	1. 005	RRFs:	Within Jamaica Bay, upstream of the JB SSB.			
5	No SSBs and only SBMs for the areas with higher flood risk	SSBs: SBMs:	None SBMs along the shorelines of Jersey City, the south side and west side of Manhattan, SBMs along the Harlem River and SBMs in the Meadowlands			
	in NYNJHAT	IFFs:	None			
	study area.	RRFs:	None			

Table 1: NYNJHAT Study Alternatives – Structural Measure Overview

2 Work Breakdown Structure

The project work breakdown structure (WBS) within MII has 5 levels. The NYNJHAT MII WBS follows the following format:

- 1. Structure (Alphanumeric)
 - Differentiates SSB, SBM, RRF, IFF, Interior Drainage, Non-Structural, and Utility Relocation costs.
 - (e.g., JB = Jamacia Bay SSB, HR = Hackensack River SSB, HRL = Hackensack Perimeter Lower Area Polygon, etc.)
- 2. Phase
- 3. Feature
- 4. Sub-feature
- 5. Activity

Table 2 shows the allocation of each structure type (WBS Level 1) within the CWWBS.

NYNJHAT Cost Item	CWWBS
Real Estate/Lands and Damages	01 – Lands and Damages
Utility Relocation	02 – Relocations
Environmental Mitigation	06 – Fish and Wildlife Facilities
SSB	10 – Breakwaters and Seawalls
IFF & RRF Navigable Gates	10 – Breakwaters and Seawalls
SBM	11 – Levees and Floodwalls
RRF	11 – Levees and Floodwalls
IFF	11 – Levees and Floodwalls
Interior Drainage	11 – Levees and Floodwalls
Cultural Resource Mitigation	18 – Cultural Resource Mitigation
Non-Structural	19 – Buildings, Grounds, and Utilities
Planning, Engineering and Design	30 – Planning, Engineering, and Design
Construction Management	31 – Construction Management

 Table 2: WBS Classification by Cost Items

3 Cost Estimating Methodology

3.1 Scope of Work Summary

This section presents a narrative on the development of the construction cost estimate for the following elements:

- SSB
- SBM
- RRF
- IFF
- Interior Drainage Features
- Individual Structure Risk Management (Non-structural and Ring-walls)

• Relocation

3.2 SSB and Other Navigation Gates

The methodology adopted for the NYNJHAT study for estimating the construction cost of the SSBs included the following methodology:

- Develop a Class 4 cost estimate for VN, JB, and HR.
- Develop a hybrid/parametric Class 4 cost estimate for the remaining SSBs using scalable equivalent features from the VN, JB, and HR SSBs.
- Develop a hybrid/parametric Class 4 cost estimate for SSB alternative alignments (i.e. VN, AK, and KVKK) using scalable equivalent features from the original VN, JB, and HR SSB alignments.

3.2.1 VN, JB, & HR SSBs – Class 4 Cost Estimate

Project quantities were developed primarily using Microsoft Excel calculations for major elements following the design development described in Appendix B. The cost estimates for the VN, JB, and HR SSBs were developed in MCACES, Second Generation (MII) relying heavily on RSMeans data, engineering judgment, and historical data. Remaining SSBs – Hybrid Parametric Class 4 Cost Estimate.

The development of a Class 4 cost estimate for the remaining storm-surge barriers (SSBs) using scalable equivalent features from the VN, JB, and HR SSBs was completed in two steps.

Step 1: Assign the most applicable VN, JB, and HR sector gate, lift gate, or dam section (WBS Level 2 or 3) (i.e., Scalable Equivalent) to all remaining SSBs under consideration in the study using engineering judgment and the general criteria outlined in Table 3.

Scalable Equivalent	Sector Gate Criteria	Lift Gate Criteria (NAVD88)	Dam Section Criteria	
HR	gate height < ~59 ft navigable passage span < ~400 ft	lift gate height < ~54 ft, span < ~900 ft	dam height < ~28 ft	
JB	gate height < ~59 ft navigable passage span > ~400 ft	lift gate height < ~54 ft, span > ~900 ft	~28 ft < dam height < ~34 ft	
VN	gate height > ~59 ft navigable passage span > ~1,000 ft	lift gate height > ~54 ft (use phase 4, 5, or 6 depending on how the gate characteristics match)	dam height > ~34 ft	

Step 1 includes making assumptions on the number of construction phases required to limit hydrodynamic and navigational impacts, as follows:

• For most SSBs, keep each phase under ~1,000 linear feet

• For Sandy Hook (SH) to Breezy Point SSB, keep each phase under ~1,500 linear feet

Table 4 and Table 5 present the Scalable Equivalent adopted for each of the remaining SSBs under consideration.

Remaining SSB under consideration	Scalable Equivalent WBS Phase 1 (generally, the Navigable Gate)	Scalable Equivalent WBS Phase 2	Scalable Equivalent WBS Phase 3	Scalable Equivalent WBS Phase 4
AK	VN01	HR03	HR03	n/a
KV	VN01	JB03	HR0303	n/a
GC	HR01	n/a	n/a	n/a
NC	HR01	n/a	n/a	n/a
FC	n/a	HR02	HR02	n/a
TN	VN01	JB03 (w/o dam section)	VN06	JB04

Table 4: Remaining SSB (except SH) Scalable Equivalent VN, JB, & HR Sector Gate, LiftGate, or Dam Section

Table 5: SH Scalable Equivalent VN, JB, & HR Sector Gate, Lift Gate, or Dam Section

Phase Number	Phase Name	Scalable Equivalent WBS	Phase Number	Phase Name	Scalable Equivalent WBS
1	Primary Floating Sector Gate	VN01	3 - W	West Dam Section	VN0603
2	Sandy Hook Floating Sector Gate	VN01	4 - W	L Lifts Gates, West Intermediate Dam	VN06
3 – E	A Lift Gates, East Dam Section	VN06	5 - W	L Lifts Gates	VN05
4 – E	Rockaway Inlet Sector Gate, Vertical Axis	VN02	6 – W	L Lifts Gates	VN05
5 – E	C Lift Gates, E Intermediate Dam Section	VN06	7 - W	L Lifts Gates	VN05
6 – E	D Lifts Gates	VN05	8 - W	L Lifts Gates	VN05
7 – E	D Lifts Gates	VN05	9 - W	K Lifts Gates	VN05
8 – E	E Lifts Gates	VN05	10 - W	J Lifts Gates	VN05
9 – E	E Lifts Gates	VN05	11 - W	I Lifts Gates	VN05
10 – E	F Lifts Gates	VN05	12 - W	I Lifts Gates	VN05
11 – E	F Lifts Gates	VN05	13 - W	I Lifts Gates	VN05
12 – E	F Lifts Gates	VN05	14 - W	G Lifts Gates	VN05
13 – E	F Lifts Gates	VN05	15 - W	G Lifts Gates	VN05

Phase Number	Phase Name	Scalable Equivalent WBS	Phase Number	Phase Name	Scalable Equivalent WBS
14 – E	G Lifts Gates	VN05			
15 – E	G Lifts Gates	VN05			

Step 2: Develop a scaling factor to scale the quantities developed for each Scalable Equivalent.

<u>Sector Gate Section</u>: The Sector Gate sections are scaled by the navigable passage area (navigable passage span \times gate height). Navigable passage span is defined as the gate width + pier/island widths. Gate height is defined as the distance between the sill elevation and the top of the gate/top of structure elevation (elevation B in the engineering appendix).

<u>Lift Gate Section</u>: The Lift Gate sections are scaled by the auxiliary area (span \times gate height). Total span is defined as the distance between the outside of the outermost piers in the lift gate sections. Gate height is defined as the distance between the average sill elevation and the top of structure elevation (elevation B in the engineering appendix).

<u>Dam Section</u>: The dam sections are scaled by the dam area (length \times dam height). Dam span is defined as the total length of the dam section between the outermost lift gate pier and the shore-based measures. Dam height is defined as the distance between the average dam mudline elevation and the top of the dam structure/top of structure elevation (elevation B in the engineering appendix).

<u>Combined Lift Gate and Dam Section</u>: The VN, JB, and HR Phases (WBS Level 2) generally include a combined lift gate and dam section. As such, a combined lift gate and dam section scaling factor was developed using a weighted equation based off the interim study SSB construction cost equation (USACE, 2019b).

3.2.2 SSB Alternative Alignments and RRF and IFF Navigation Gates – Hybrid Parametric Class 4 Cost Estimate

The project construction costs for the SSB Alternative Alignments and RRF and IFF Navigation Gates were developed with the same process as the remaining SSBs outlined in Section 3.2.2.

3.3 SBM, RRF, and IFF

Project quantities were developed for typical measure cross-sections primarily using Microsoft Excel calculations for major elements following the design development described in Appendix B. Linear foot costs for typical SBM, RRF, and IFF measures were developed in MII as assemblies, relying heavily on cost book data and supplemented with quotes for major equipment (i.e., flip-up barriers and operable floodgates). Within MII, the quantity measure assemblies are multiplied by the length of each measure attributed to the specific site.

The typical SBM and IFF features developed in MII include:

- XL Floodwall
- Large Floodwall
- Medium Floodwall

- Medium Levee
- Large Levee
- Elevated Promenade

New York – New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study

- Reinforced Dune
- Seawall
- Floodwall w/ Park Integration
- Levee with Road Ramp

The typical RRF features developed in MII include:

- High Floodwall
- Standard Floodwall
- Low Floodwall
- High Berm
- Medium Berm
- Low Berm
- Hybrid Berm

- Flip-up Barrier
- Deployable Floodgate
- Tide Gates
- Revetment with Floodwall
- Deep Bulkhead
- Shallow Bulkhead
- Tide Gates
- Deployable Floodgate
- Road Ramp
- Road Raising

Site specific modifiers, such as population density, site access, and staging conditions, were applied as productivity, marine crew labor and equipment (MCLEM), and access material factor (AMF) markups within MII to account for construction cost variability at each site.

3.4 Interior Drainage Features

Cost estimates for interior drainage features associates with SSBs, SBMs, and RRFs were developed as follows:

- **SSB Interior Drainage Features** Pump station costs have been estimated using a cost curve developed from prior projects.
- SBM & RRF Interior Drainage Features Cost estimates for interior drainage facilities behind fixed lines of protection were developed from historical costs of such facilities for previously constructed or currently proposed projects of a similar nature in the New York/New Jersey area. The costs were applied as a linear foot cost and based off storage/access constrains.

3.5 Individual Structure Risk Management (Non-structural and Ring-walls)

Cost estimates for individual structure risk management were developed as follows:

- Wet Floodproofing, Dry Floodproofing, & Elevation The analysis referenced nonstructural costs developed for other projects and assigned costs based on structure type (i.e., slab on grade, basement – subgrade, basement – walkout, raised/crawlspace, bilevel / raised ranch, split level), flood depth / elevation height, and building footprint.
- Structural Ring-walls and Ring-levees The reference cost for ring-walls was taken from the cost estimate for a stand-alone floodwall of height 6.5 feet above grade, derived as part of the structural plan development.

The individual structure risk management costs were incorporated into the MII cost estimate as a direct cost allowance within an individual CSI task. Reference Engineering Sub-Appendix B.5 for

11

additional information on the individual structure risk management costs. Individual structure risk management costs are input into MII at the effective price level.

3.6 SBM, RRF, and IFF Relocation

Relocation costs include removing, relocating, or reconstructing property of others, such as roads, railroads, cemeteries, utilities, buildings, and other structures, and includes real estate planning and acquisition expenses. For the NYNJHAT study, relocations costs for each project were developed at a Class 5 level without site-specific investigations or surveys. A parametric formula for relocation costs was developed from recent similar projects in the Northeast using a best-fit exponential equation relating site-specific characteristics of the project area to the cost per foot for relocations. Cost data were gathered from the following sources:

- East Harlem Resiliency Study Costing Memo, October 23, 2018;
- South Shore of Staten Island, NY Coastal Storm Risk Management; Interim Feasibility Study for Fort Wadsworth to Oakwood Beach – USACE Cost Engineering Appendix, September 2016; and
- Rahway River Basin, New Jersey Coastal Storm Risk Management Feasibility Study USACE Cost Engineering Appendix.

3.7 Lands and Damages

Studies were conducted by the USACE New York District Real Estate Division to determine the estimates value of land and easements needed for each alternative. The estimates for Alternatives 2 and 5 were completed at a higher level than Alternatives 3A, 3B, and 4.

3.8 Planning, Engineering, & Design

The cost was developed for all activities associated with the planning, engineering, and design effort. The cost for this account includes the preparation of Design Documentation Reports, plans, specifications, and engineering support during construction through project completion. It includes all the in-house labor based upon work-hour requirements, material and facility costs, travel, and overhead.

3.9 Construction Management

The cost was developed for all construction management activities from pre-award requirements through final contract closeout. This cost includes the in-house labor based upon work-hour requirements, materials, facility costs, support contracts, travel and overhead. The cost was developed based on the input from the construction division in accordance with the CWBS and include but not limited to anticipated items such as salaries of the resident engineer and staff, survey men, inspectors, draftsmen, clerical, and custodial personnel; operation, maintenance and fixed charges for transportation and for other field equipment; field supplies; construction management, general construction supervision; project office administration, distributive cost of area office and general overhead charged to the project. The work items and activities would include, but not be limited to: the salaries of all supervisory, engineering, office and safety field personnel; all on site expenses.

4 Schedule Methodology

This section provides background on how the construction durations were developed for each project and each NYNJHAT study alternative.

4.1 Environmental Restriction Windows

Environmental restriction windows are a major impact on the duration of marine construction projects. The initial environmental restriction windows assumptions adopted for the study were developed based on previous projects and are presented in Table 6 and Table 7. The construction schedule durations for the NYNJHAT study are based on these environmental windows.

SSB	Environmental Restriction Window	% of Year
SH	SH Jan 1 – May 31	
HR	Mar 1 – Jun 30	33%
AK, KV	Mar 1 – May 31	25%
VN	Nov 15 – Apr 15	42%
JB	Apr 1 – Sep 15	46%
FC, NC, GC, TN	Jul 1 – Sep 30	25%

 Table 6: SSB Environmental Restriction Windows

SBM	Environmental Restriction Window	% of Year
ALL SBMs, RRFs, and IFFs	Mar 1 – Jun 30	33%

4.2 NYNJHAT Study Alternative - Construction Duration Methodology

The construction durations for each NYNJHAT study alternative were developed with a simplified contracting strategy consistent across each alternative for the purpose of determining the TSP. The adopted methodology used the following major assumptions:

- Four (4) of each category of perimeter measure/feature (primary SBMs, RRFs and IFFs) will be under construction at any given time.
- The number of SSBs under construction at any given time is not limited.
- If any single measure/feature (such as an SSB or a major SBM) has a construction duration larger than the previous assumption calculations, then that becomes the critical path.
- If the average amount of "schedule float" associated with the categories of construction which are not on the critical path is less than 25% of the duration of the estimated

construction duration associated with the critical path, an additional year is added to the total duration estimate.

The NYNJHAT study alternative construction durations are presented in Table 8.

Alternative	Construction Duration (years)		
2	32		
3A	25		
3B	14		
4	14		
5	6		

 Table 8: NYNJHAT Study Alternative Construction Duration

5 Contingencies

As stated in ER 1110-2-1302, the goal in contingency development is to identify the uncertainty associated with an item of work or task, forecast the cost/risk relationship, and assign a value to this task that would limit the cost risk to an acceptable degree of confidence. Consideration must be given to the details available at each stage of planning, design, or construction for which a cost estimate is being prepared. Contingencies may vary throughout the cost estimate and could constitute a significant portion of the overall costs when a lack of investigative data or design details are available. Final contingency development and assignment that describes the potential for cost growth is included in the cost estimate. During the development of the cost estimates, sufficient contingencies developed via PDT discussions during Abbreviated Risk Analysis (ARA) were applied to develop the Total Project First Cost. Major contingency drivers determined by the PDT in the project include geotechnical conditions, limited field investigations, navigation access, and potential for scope growth. These drivers all have the potential to bring forth unforeseen costs. The contingency factors for each of the five (5) alternatives resulted from the ARA are summarized in Tables 9-13.

Element	Features of Work	Contingency Factor
02 Relocations	Relocations	54.23%
06 Fish & Wildlife Facilities	Environmental Mitigation	80.82%
10 Breakwater & Seawalls	SSB: Breezy Point to Sandy Hook	62.17%
10 Breakwater & Seawalls	SSB: Throgs Neck	47.49%
10 Breakwater & Seawalls	IFF SSB and RRF Navigable Barriers	85.11%
11 Levees and Floodwalls	Shoreline Based Measures	29.24%
11 Levees and Floodwalls	Induced Flooding-Mitigation Features	36.30%
11 Levees and Floodwalls	Risk Reduction Features	53.98%
11 Levees and Floodwalls	Interior Drainage Features	50.76%
11 Levees and Floodwalls	Individual Structure Protection/Non-Structural	45.25%
19 Building, Grounds, and Utilities	Individual Structure Protection/Non-Structural	45.25%
Total Construction Contingency		59.24%
01 Lands and Damages	Lands and Damages	50.00%
30 Planning, Engineering, and Design	Planning, Engineering, and Design	59.24%
31 Construction Management	Construction Management	59.24%

 Table 9: Alternative 2 Contingency Factors

Table 10: Alternative 3A Contingency Factors

Element	Features of Work	Contingency
		Factor
02 Relocations	Relocations	54.23%
06 Fish & Wildlife Facilities	Environmental Mitigation	80.82%
10 Breakwater & Seawalls	SSB: Verrazano Narrows	79.40%
10 Breakwater & Seawalls	SSB: Arthur Kill	42.65%
10 Breakwater & Seawalls	SSB: Jamaica Bay	33.70%
10 Breakwater & Seawalls	SSB: Throgs Neck	47.49%
10 Breakwater & Seawalls	IFF SSB and RRF Navigable Barriers	85.11%
11 Levees and Floodwalls	Shoreline Based Measures	32.76%
11 Levees and Floodwalls	Induced Flooding-Mitigation Features	37.53%
11 Levees and Floodwalls	Risk Reduction Features	53.98%
11 Levees and Floodwalls	Interior Drainage Features	50.76%
11 Levees and Floodwalls	Individual Structure Protection/Non-Structural	45.25%
18 Cultural Resource Mitigation	Cultural Resource Mitigation	23.31%
19 Building, Grounds, and Utilities	Individual Structure Protection/Non-Structural	45.25%
Total Construction Contingency		59.10%
01 Lands and Damages	Lands and Damages	50.00%
30 Planning, Engineering, and Design	Planning, Engineering, and Design	59.10%
31 Construction Management	Construction Management	59.10%

Element	Features of Work	Contingency
		Factor
02 Relocations	Relocations	76.33%
06 Fish & Wildlife Facilities	Environmental Mitigation	56.68%
10 Breakwater & Seawalls	SSB: Arthur Kill	42.65%
10 Breakwater & Seawalls	SSB: Kill Van Kull	42.65%
10 Breakwater & Seawalls	SSB: Jamaica Bay	33.70%
10 Breakwater & Seawalls	SSB: Gowanus, Newtown, and Flushing	85.11%
10 Breakwater & Seawalls	IFF SSB and RRF Navigable Barriers	85.11%
11 Levees and Floodwalls	Shoreline Based Measures	52.47%
11 Levees and Floodwalls	Induced Flooding-Mitigation Features	37.53%
11 Levees and Floodwalls	Risk Reduction Features	53.98%
11 Levees and Floodwalls	Interior Drainage Features	65.52%
11 Levees and Floodwalls	Individual Structure Protection/Non-Structural	49.47%
18 Cultural Resource Mitigation	Cultural Resource Mitigation	61.94%
19 Building, Grounds, and Utilities	Individual Structure Protection/Non-Structural	49.47%
Total Construction Contingency		50.71%
01 Lands and Damages	Lands and Damages	30.00%
30 Planning, Engineering, and Design	Planning, Engineering, and Design	50.71%
31 Construction Management	Construction Management	50.71%

Table 11: Alternative 3B Contingency Factors

Table 12: Alternative 4 Contingency Factors

Element	Features of Work	Contingency Factor
02 Relocations	Relocations	76.33%
06 Fish & Wildlife Facilities	Environmental Mitigation	56.68%
10 Breakwater & Seawalls	SSB: Hackensack	34.74%
10 Breakwater & Seawalls	SSB: Jamaica Bay	33.70%
10 Breakwater & Seawalls	SSB: Gowanus, Newtown, and Flushing	85.11%
10 Breakwater & Seawalls	RRF Navigation Gates	85.11%
11 Levees and Floodwalls	Shoreline Based Measures	52.47%
11 Levees and Floodwalls	Induced Flooding-Mitigation Features	47.52%
11 Levees and Floodwalls	Risk Reduction Features	53.98%
11 Levees and Floodwalls	Interior Drainage Features	65.52%
11 Levees and Floodwalls	Individual Structure Protection/Non-Structural	61.94%
18 Cultural Resource Mitigation	Cultural Resource Mitigation	23.31%
19 Building, Grounds, and Utilities	Individual Structure Protection/Non-Structural	61.94%
Total Construction Contingency		51.75%
01 Lands and Damages	Lands and Damages	50.00%
30 Planning, Engineering, and Design	Planning, Engineering, and Design	51.75%
31 Construction Management	Construction Management	51.75%

Element	Features of Work	Contingency Factor	
02 Relocations	Relocations	75.10%	
06 Fish & Wildlife Facilities	Environmental Mitigation	56.68%	
11 Levees and Floodwalls	Shoreline Based Measures	52.47%	
11 Levees and Floodwalls	Interior Drainage Features	65.52%	
18 Cultural Resource Mitigation	Cultural Resource Mitigation	23.31%	
19 Building, Grounds, and Utilities	Individual Structure Protection/Non-Structural	61.94%	
Total Construction Contingency		58.93%	
01 Lands and Damages	Lands and Damages	50.00%	
30 Planning, Engineering, and Design	Planning, Engineering, and Design	58.93%	
31 Construction Management	Construction Management	58.93%	

 Table 13: Alternative 5 Contingency Factors

Table 14: NYNJHAT Features of Work

CWWBS Account Number	Description of the Division of the Features of Work
02 Relocations	One Feature of Work for all relocations.
06 Fish and Wildlife Facilities	One Feature of Work for all environmental mitigation.
10 Breakwaters and Seawalls	Each major SSB was evaluated as a separate Feature of Work with the exception of the smaller SSBs (GC, NC, FC) and the RRF/IFF navigation gates.
11 Levees and Floodwalls	SBMs, IFFs, RRFs, and IDFs were evaluated as separate Features of Work.
18 Cultural Resource Preservation	One Feature of Work for all cultural resource mitigation.
19 Buildings, Grounds, and Utilities	One Feature of Work for all ISRM.

6 OMRRR Costs

Operation, Maintenance, Repair, Replacement, and Rehabilitation (OMRRR) costs are calculated as a function of construction costs and applied at the appropriate years, after construction is complete. The OMRRR percentages were developed and described in the interim report (USACE, 2019a).

Operations: All features are treated as if functional/deployed at a rate of once every 2 years at the start of the 50-year period of analysis, growing to three-times every 2 years at the end of the period of analysis.

Maintenance: Annual maintenance costs are calculated at 0.3% of construction costs, to be applied annually once the feature is constructed. Five-year maintenance costs are calculated and applied every 5 years.

Repair: Repair costs are to be applied every 10 years once the feature is constructed.

Rehabilitation: Rehabilitation costs applied twice within the period of analysis, at the 25-year mark and at the 50-year mark.

7 NYNJHAT Study Alternatives First Cost Tables

The NYNJHAT study alternatives cost estimates by First Costs are presented in Table 15, Table 16, Table 17, Table 18, and Table 19.

Feat. Acct	Description	Subtotal	Cont. %	Cont. \$\$	Total Cost
01	LANDS AND DAMAGES	\$350,830,000	50%	\$175,410,000	\$526,240,000
02	RELOCATIONS	\$985,240,000	54%	\$534,300,000	\$1,519,530,000
06	FISH AND WILDLIFE FACILITIES	\$1,340,000,000	81%	\$1,083,040,000	\$2,423,040,000
10	BREAKWATERS AND SEAWALLS	\$49,931,600,000	62%	\$30,893,380,000	\$80,824,970,000
11	LEVEES AND FLOODWALLS	\$7,238,890,000	38%	\$2,746,600,000	\$9,985,500,000
19	BUILDINGS, GROUNDS, AND UTILITIES	\$77,530,000	45%	\$35,080,000	\$112,610,000
30	PLANNING, ENGINEERING, AND DESIGN	\$8,489,190,000	59%	\$5,028,040,000	\$13,517,230,000
31	CONSTRUCTION MANAGEMENT	\$2,234,000,000	59%	\$1,323,170,000	\$3,557,170,000
	Total Alt 2	\$70,647,270,000		\$41,819,030,000	\$112,466,300,000

 Table 15: Alternative 2 First Cost Table

Feat. Acct	Description	Subtotal	Cont. %	Cont. \$\$	Total Cost
01	LANDS AND DAMAGES	\$2,904,950,000	50%	\$1,370,170,000	\$4,275,120,000
02	RELOCATIONS	\$1,076,310,000	54%	\$583,680,000	\$1,659,990,000
06	FISH AND WILDLIFE FACILITIES	\$1,540,000,000	81%	\$1,244,690,000	\$2,784,690,000
10	BREAKWATERS AND SEAWALLS	\$27,801,500,000	64%	\$17,854,390,000	\$45,655,890,000
11	LEVEES AND FLOODWALLS	\$8,477,570,000	39%	\$3,322,460,000	\$11,800,030,000
18	CULTURAL RESOURCE PRESERVATION	\$39,000,000	23%	\$9,090,000	\$48,090,000
19	BUILDINGS, GROUNDS, AND UTILITIES	\$25,450,000	45%	\$11,520,000	\$36,970,000
30	PLANNING, ENGINEERING, AND DESIGN	\$5,551,780,000	59%	\$3,280,650,000	\$8,832,430,000
31	CONSTRUCTION MANAGEMENT	\$1,460,990,000	59%	\$863,330,000	\$2,324,320,000
	Total Alt 3A	\$48,877,550,000		\$28,539,970,000	\$77,417,520,000

 Table 16:
 Alternative 3A First Cost Table

Cost Engineering Narrative

DRAFT

Feat. Acct	Description	Subtotal	Cont. %	Cont. \$\$	Total Cost
01	LANDS AND DAMAGES	\$4,488,850,000	30%	\$1,316,880,000	\$5,805,740,000
02	RELOCATIONS	\$1,342,640,000	76%	\$1,024,830,000	\$2,367,470,000
06	FISH AND WILDLIFE FACILITIES	\$3,220,000,000	57%	\$1,825,100,000	\$5,045,100,000
10	BREAKWATERS AND SEAWALLS	\$12,448,260,000	44%	\$5,486,220,000	\$17,934,480,000
11	LEVEES AND FLOODWALLS	\$9,200,320,000	54%	\$4,945,580,000	\$14,145,890,000
18	CULTURAL RESOURCE PRESERVATION	\$94,000,000	62%	\$58,220,000	\$152,220,000
19	BUILDINGS, GROUNDS, AND UTILITIES	\$23,040,000	49%	\$11,400,000	\$34,440,000
30	PLANNING, ENGINEERING, AND DESIGN	\$3,751,780,000	51%	\$1,902,300,000	\$5,654,080,000
31	CONSTRUCTION MANAGEMENT	\$987,310,000	51%	\$500,610,000	\$1,487,910,000
	Total Alt 3B	\$35,556,190,000		\$17,071,130,000	\$52,627,320,000

 Table 17: Alternative 3B First Cost Table

Feat. Acct	Description	Subtotal	Cont. %	Cont. \$\$	Total Cost
01	LANDS AND DAMAGES	\$3,072,350,000	50%	\$1,453,890,000	\$4,526,240,000
02	RELOCATIONS	\$1,371,150,000	76%	\$1,046,600,000	\$2,417,750,000
06	FISH AND WILDLIFE FACILITIES	\$3,430,000,000	57%	\$1,943,990,000	\$5,373,990,000
10	BREAKWATERS AND SEAWALLS	\$6,010,930,000	40%	\$2,418,880,000	\$8,429,810,000
11	LEVEES AND FLOODWALLS	\$10,894,870,000	54%	\$5,847,440,000	\$16,742,310,000
18	CULTURAL RESOURCE PRESERVATION	\$85,000,000	23%	\$19,810,000	\$104,810,000
19	BUILDINGS, GROUNDS, AND UTILITIES	\$1,750,000	62%	\$1,080,000	\$2,830,000
30	PLANNING, ENGINEERING, AND DESIGN	\$3,105,600,000	52%	\$1,607,480,000	\$4,713,090,000
31	CONSTRUCTION MANAGEMENT	\$817,260,000	52%	\$423,020,000	\$1,240,290,000
	Total Alt 4	\$28,788,910,000		\$14,762,210,000	\$43,551,130,000

 Table 18: Alternative 4 First Cost Table

Cost Engineering Narrative

DRAFT

Feat. Acct	Description	Subtotal	Cont. %	Cont. \$\$	Total Cost
01	LANDS AND DAMAGES	\$150,000,000	50%	\$75,000,000	\$225,000,000
02	RELOCATIONS	\$789,270,000	75%	\$592,740,000	\$1,382,010,000
06	FISH AND WILDLIFE FACILITIES	\$2,830,000,000	57%	\$1,603,940,000	\$4,433,940,000
11	LEVEES AND FLOODWALLS	\$4,762,400,000	58%	\$2,760,550,000	\$7,522,950,000
18	CULTURAL RESOURCE PRESERVATION	\$50,000,000	23%	\$11,650,000	\$61,650,000
30	PLANNING, ENGINEERING, AND DESIGN	\$1,201,510,000	59%	\$707,970,000	\$1,909,480,000
31	CONSTRUCTION MANAGEMENT	\$316,190,000	59%	\$186,310,000	\$502,500,000
	Total Alt 5	\$10,099,370,000		\$5,938,170,000	\$16,037,540,000

 Table 19: Alternative 5 First Cost Table

8 Annual Cost Summary

In order to compare the alternatives to the project benefits the project first costs including contingencies were adjusted to reflect the total present value of the investment at the 2044 base year. This analysis assumed that the project design would begin in year 2025 and that construction, real estate acquisition and construction management expenditures would begin in year 2030. Expenditures were assumed to be a uniform amount over the construction period. The calculation of investment costs includes interest during construction for expenditures prior to the 2044 base year and present value discounting of all expenditures after the base year to reflect economic opportunity costs. The total present value of the investment cost plus the present value of OMRRR costs were multiplied by the capital recovery factor to determine the average annual costs over the 50-year period of analysis. Table 20 provides a summary comparison of the first and annual costs of alternatives.

Civil Works Feature & Sub-Feature Description		Alternative 2		Alternative 3A		Alternative 3B		Alternative 4	Alternative 5		
02 - RELOCATIONS \$ 98		985,239,409	\$	1,076,309,448	\$	1,342,637,223	\$	1,371,153,126	\$	789,270,692	
06 - FISH & WILDLIFE FACILITIES	\$	1,340,000,000	\$	1,540,000,000	\$	3,220,000,000	\$	3,430,000,000	\$	2,830,000,000	
10 - BREAKWATER & SEAWALLS	\$	49,931,595,963	\$	27,801,495,009	\$	12,448,259,897	\$	9,335,488,309	\$	-	
11 - LEVEES & FLOODWALLS	\$	7,238,894,674	\$	8,477,569,861	\$	9,200,316,220	\$	7,570,305,765	\$	4,762,402,283	
18 - CULTURAL RESOURCE PRESERVATI	\$	-	\$	39,000,000	\$	94,000,000	\$	85,000,000	\$	50,000,000	
19 - BUILDINGS, GROUNDS & UTILITIES	\$	77,528,856	\$	25,453,929	\$	23,039,081	\$	1,748,257	\$	-	
01 - LANDS AND DAMAGES	\$	350,828,924	\$	2,904,949,139	\$	4,488,854,765	\$	3,072,350,717	\$	150,000,000	
30 - PLANNING, ENGINEERING & DESIGN	\$	8,489,189,393	\$	5,551,775,525	\$	3,751,775,970	\$	3,105,601,603	\$	1,201,513,399	
31 - CONSTRUCTION MANAGEMENT	\$	2,233,997,209	\$	1,460,993,559	\$	987,309,466	\$	817,263,580	\$	316,187,737	
PROJECT COST		70,647,274,427	\$	48,877,546,471	\$	35,556,192,622	\$	28,788,911,356	\$	10,099,374,110	
Construction Contingency (%)		59.24%		59.10%		50.71%		51.75%		58.93%	
Account 01 Contingency (%)		50.00%		50.00%		30.00%		50.00%		50.00%	
CONTINGENCY:	\$	41,819,028,778	\$	28,539,974,693	\$	17,071,131,456	\$	14,762,214,290	\$	5,938,166,163	
TOTAL:		112,466,303,205	\$	77,417,521,164	\$	52,627,324,078	\$	43,551,125,646	\$	16,037,540,273	
OMRRR COSTS: (Present Value)	\$	31,325,614,852	\$	9,604,654,164	\$	10,345,508,365	\$	8,561,068,683	\$	3,704,745,959	
INTEREST DURING CONSTRUCTION:	\$	6,503,054,914	\$	9,145,800,054	\$	13,154,506,010	\$	10,885,557,816	\$	6,075,902,202	
TOTAL CURRENT INVESTMENT COSTS:	\$	150,294,972,971	\$	96,167,975,381	\$	76,127,338,453	\$	62,997,752,145	\$	25,818,188,435	
ANNUALIZED COSTS (50 YRS, 2.25%											
discount Rate):	\$	5,037,640,836	\$	3,223,392,708	\$	2,551,663,448	\$	2,111,581,262	\$	865,383,305	

Table 20: Alternative Costs Summary

9 Cost Summary

The Total Fully Funded Project Cost for the Tentatively Selected Plan (Alternative 3B) considers future inflation to midpoint of construction. The Total Fully Funded Project Cost for the TSP is estimated at \$77,346,381,000 as presented in Table 21.

Table 21: Total Project Cost Summary for the Tentatively Selected Plan

0

PROJECT: New York - New Jersey Harbor and Tributaries Coastal Storm Risk Management Feasibility Study **DISTRICT:** New York District PREPARED: 9/18/2022 **PROJECT NO: P2 404586** POC: CHIEF, COST ENGINEERING, Jeffrey Gross LOCATION: New York & New Jersey

This Estimate reflects the scope and schedule in report;

Project First Cost (Constant Dollar Basis

Program Year (Budget EC): 2022																	
œ	C	ivil Works Work Breakdown Structure	Estimated Cost					Effective Price Level Date: 1 Oct 2021						Total Project Cost (Fully Funded)			
<u> </u>	WBS NUMBER A	Civil Works Feature & Sub-Feature Description B	COST _ <u>(\$K)</u> C	CNTG (\$K) D	CNTG _(%) <i>E</i>	TOTAL _ <u>(\$K)</u> <i>F</i>	ESC (%) G	COST _ <u>(\$K)</u> <i>H</i>	CNTG _(\$K) _/	TOTAL _ <u>(\$K)</u> _J	Spent Thru: 1-Oct-21 <u>(\$K)</u>	TOTAL FIRST COST 	INFLATED (%) 	COST _(\$K) M	CNTG (\$K) N	FULL _ <u>(\$K)</u> 0	
	02 06 10 11 18 19	RELOCATIONS FISH & WILDLIFE FACILITIES BREAKWATER & SEAWALLS LEVEES & FLOODWALLS CULTURAL RESOURCE PRESERVATION BUILDINGS, GROUNDS & UTILITIES	\$1,342,637 \$3,220,000 \$12,448,261 \$9,200,316 \$94,000 \$23,039	\$5,486,216 \$4,945,575 \$58,224	56.7% 44.1% 53.8% 61.9%	\$5,045,096 \$17,934,477 \$14,145,891 \$152,224	0.0% 0.0% 0.0% 0.0%	\$1,342,637 \$3,220,000 \$12,448,261 \$9,200,316 \$94,000 \$23,039	\$1,024,835 \$1,825,096 \$5,486,216 \$4,945,575 \$58,224 \$11,397	\$2,367,472 \$5,045,096 \$17,934,477 \$14,145,891 \$152,224 \$34,436	\$0 \$0 \$0 \$0	\$2,367,472 \$5,045,096 \$17,934,477 \$14,145,891 \$152,224 \$34,436	48.5% 48.5% 48.5% 48.5%	\$1,994,003 \$4,782,149 \$18,487,404 \$13,663,753 \$139,603 \$34,216	\$2,710,522 \$8,147,796		
ĺ		CONSTRUCTION ESTIMATE TOTALS:	\$26,328,253	\$13,351,343		\$39,679,596	0.0%	\$26,328,253	\$13,351,343	\$39,679,596	\$0	\$39,679,596	48.5%	\$39,101,129	\$19,828,607	\$58,929,736	
	01	LANDS AND DAMAGES	\$4,488,855	\$1,316,884	29.3%	\$5,805,739	0.0%	\$4,488,855	\$1,316,884	\$5,805,739	\$0	\$5,805,739	48.5%	\$6,666,576	\$1,955,756	\$8,622,332	
	30	PLANNING, ENGINEERING & DESIGN	\$3,751,776	\$1,902,299	50.7%	\$5,654,075	0.0%	\$3,751,776	\$1,902,299	\$5,654,075	\$0	\$5,654,075	34.5%	\$5,047,688	\$2,559,378	\$7,607,066	
	31	CONSTRUCTION MANAGEMENT	\$987,309	\$500,605	50.7%	\$1,487,915	0.0%	\$987,309	\$500,605	\$1,487,915	\$0	\$1,487,915	47.0%	\$1,451,352	\$735,893	\$2,187,245	
Γ		PROJECT COST TOTALS:	\$35,556,194	\$17,071,132	48.0%	\$52,627,325		\$35,556,194	\$17,071,132	\$52,627,325	\$0	\$52,627,325	47.0%	\$52,266,745	\$25,079,635	\$77,346,381	

PROJECT COST TOTALS: \$35,556,194 \$17,071,132 48.0% \$52,627,325

\$35,556,194 \$17,071,132 **\$52,627,325**

CHIEF, COST ENGINEERING, Jeffrey Gross PROJECT MANAGER, Bryce Wisemiller CHIEF, REAL ESTATE, Allen Roos CHIEF, PLANNING, Cliff Jones CHIEF, ENGINEERING, Encer Shaffer CHIEF, OPERATIONS, Thomas Creamer CHIEF, CONSTRUCTION, Richard English CHIEF, ENGINEERING, Encer Shaffer CHIEF, PM-PB, xxxx CHIEF, DPM, Joseph Seebode

ESTIMATED TOTAL PROJECT COST: \$77,346,381

10 References

- USACE. (2019a). *New York-New Jersey Harbor and Tributaries Interim Report Cost Appendix.* New York: USACE New York District.
- USACE. (2019b). New York-New Jersey Harbor and Tributaries Overview of Engineering Work for the NYNJHATS Interim Report. New York: USACE New York District.